Energy Levels and Crystal-Field Calculations of Europium and Terbium in Yttrium Aluminum Garnet*

I. A. KONINGSTEIN Bell Telephone Laboratories, Murray Hill, New Jersey (Received 1 June 1964)

Experimental and theoretical studies of the trivalent europium and terbium ions in vttrium aluminum garnet are reported in this communication. From crystal-field calculations on the split ^{7}F manifolds of Eu^{s+} and Tb³⁺, it is concluded that the crystal field is approximately tetragonal. Agreement between experimental and calculated splitting patterns is satisfactory for those Stark components of 7F manifolds which are not far removed from the center of gravity.

I. INTRODUCTION

ENERGY levels of some rare-earth ions in yttrium aluminum garnet (YAIG) and yttrium gallium garnet (YGaG) are reported in the literature.¹⁻⁶ The splitting of J manifolds of Er^{3+} :YGaG has been explained by Pappalardo⁴ on the basis of a crystal field of cubic symmetry. The crystallographic data of Geller and Gilleo⁷ on the position of ions in YIG indicate that vttrium ions (which are replaced by rare-earth ions) occupy sites of orthorhombic symmetry. Dillon and Walker⁸ have calculated the crystal field for this site. Recent calculations on the split manifolds of Nd3+:YAIG indicate⁶ that the symmetry of the crystal field is approximately tetragonal. In this communication the energy level diagrams of Eu³⁺ and Tb³⁺:YAlG are discussed. The crystal-field calculations indicate that a slight deviation occurs from tetragonal symmetry. This deviation has been found to be larger in the gallium garnet than in the aluminum garnet.

II. EXPERIMENTAL

Absorption spectra of samples containing $\sim 5-10\%$ Eu³⁺ and Tb³⁺:YAlG have been studied in the infrared with a Beckman IR7 spectrometer. In the visible, a $\frac{1}{2}$ -m Jarrell-Ash spectrometer was used. The fluorescence spectrum of Eu³⁺:YAlG and Tb³⁺:YAlG was also studied, and the fluorescence was excited with a filtered high-pressure Hg light source. The absorption and fluorescence spectra of these materials were studied at 30, 77, and 300°K.

1. Absorption Spectrum of Eu³⁺: YAlG

The energy level diagram of the trivalent europium ion is now well known⁹ for J states up to 28 000 cm⁻¹.

(1960).
² D. L. Wood, J. Chem. Phys. 39, 1671 (1963).
⁵ L. G. Van Uitert, R. C. Linares, and A. A. Ballman, J. Chem. Phys. 36, 702 (1962).
⁴ R. Pappalardo, Z. Physik 173, 374–391 (1963).
⁵ R. Pappalardo, Nuovo Cimento 26, 4, 748 (1962).
⁶ J. A. Koningstein and J. E. Geusic, preceding paper, Phys. Rev. 125 (1214) (1963).

135, A711 (1964).

 ⁷S. Geller and M. A. Gilleo, Phys. Chem. Solids 3, 30 (1957).
 ⁸J. F. Dillon and L. R. Walker, Phys. Rev. 124, 1401 (1961). ⁹G. H. Dieke and H. M. Crosswhite, Appl. Optics 2, 7, 675 (1963).

The ${}^{7}F_{1}$ state has been established at $\sim 350 \text{ cm}^{-1}$ above the ground state ${}^{7}F_{0}$. The transitions in the absorption spectrum at room temperature for Eu³⁺: YAlG originates in levels of the 7F_0 and 7F_1 manifolds.

a. Absorption Spectrum in the Visible

The transition between the 7F_0 and 5D_0 states of Eu³⁺:YAlG should occur at about \sim 5810 Å. No absorption has been found in that region; however, a triplet was recorded at 5905.5, 5912.5, and 5968.5 Å (see Fig. 1). Upon cooling of the sample, this triplet disappeared, indicating that the transitions originate in excited levels. Fluorescence of Eu³⁺:CdF₂ has been observed by Kingsley and Prener¹⁰ in the same part of the spectrum, and they attributed it to transitions between the ${}^{5}D_{0}$ and ${}^{7}F_{1}$ manifolds, The transitions of ${}^{7}F_{1}$ to ${}^{5}D_{0}$ for Eu³⁺:YAlG occur apparently at the three wavelengths mentioned above.

Two rather strong absorptions have been detected at 5276.5 and 5265.0 Å. The linewidth of these absorptions decreased on cooling to liquid N2 temperature. These two bands represent transitions between the ground state and two of the Stark levels of the ${}^{5}D_{1}$ manifold. Other absorptions at 5345, 5350.8, and 5406.4 Å disappeared when the sample was cooled to 77°K. Transitions between levels of the ${}^{7}F_{1}$ and ${}^{5}D_{1}$ manifolds of Eu³⁺:YAlG occur in this region. Also transitions from a level 824 ± 2 cm⁻¹ above the ground state to the levels of ${}^{5}D_{0}$ and ${}^{5}D_{1}$ manifolds have been observed (300°K) at 6099.0, 5513, and 5503 Å. The absorption spectrum described up to this point enables one to set up a part of the term scheme of Eu3+:Y3Al2(AlO4)3 (see Fig. 2). The position of the level of the ${}^{5}D_{0}$ state was calculated to be at 17 220 ± 5 cm⁻¹ above the ground state.

Transitions from the ground state and levels of the excited state ${}^{7}F_{1}$ to the crystal-field components of the ${}^{5}D_{2}$ and ${}^{5}D_{3}$ manifolds have been observed as weak absorptions between 4665 and 4045 Å. The absorption bands in the visible are given in Table I.

b. Absorption Spectrum in the Infrared

Strong absorptions have been observed in the region from 1900 to 5400 cm⁻¹ at room temperature and at

¹⁰ J. D. Kingsley and J. S. Prener, Phys. Rev. 126, 458 (1962).

^{*}This work was supported in part by the U. S. Army Signal Corps under Contract DA-36-039-AMC-02333(E). ¹ R. Pappalardo and D. L. Wood, J. Chem. Phys. 33, 1734

^{(1960).}

SPLITTING OF THE "FI STATE OF EU: Y3 AR2(ARO4)3

 $\sim 30^{\circ}$ K. Strong host-lattice absorptions below 1900 cm⁻¹ prevent the observation of transitions between the ground state and levels of the 7F_2 and 7F_1 manifolds. Four groups of absorptions have been found in the abovementioned spectral region. Transitions from the ground state to crystal-field components of the 7F_3 , 7F_4 , $^{7}F_{5}$, and $^{7}F_{6}$ manifolds occur between 1916–1994 cm⁻¹; 2863-3246 cm⁻¹; 3791-4226 cm⁻¹, and 4976-5145cm⁻¹. The part of the spectrum from 3.6–3.2 μ [2780– 3230 cm⁻¹] and 2.1–1.8 μ [4760–5560 cm⁻¹] is shown in Figs. 3 and 4. The absorption spectrum of Eu³⁺:YGa₂- $(GaO_4)_3$ in the same spectral regions is also shown. A similarity between the two spectra exists, although the absorptions occur at somewhat different wavelengths. The spectra of Eu³⁺:YAlG and Eu³⁺:YGaG are quite similar and reveal the presence of doublets, the doublet separation in the gallium garnet being slightly larger than in the aluminum garnet. The infrared absorption bands of Eu³⁺:YAlG are listed in Table II.

2. Fluorescence Spectrum of Eu³⁺: YA1G

FIG. 1. The absorption spec-

The fluorescence spectrum has been recorded at room temperature and 77°K in the spectral region of 5900 to 7110 Å. Strong fluorescence occurs at 5904.9, 5912.9, and 5964 Å, which originates in the level of the ${}^{5}D_{0}$ state and terminates on crystal field levels of the 7F_1 manifold. Other fluorescence lines have been recorded at 6097 and 6304 Å and at 6533.5, 6553.0, and 6567.0 Å. These fluorescence lines originate in the ${}^{5}D_{0}$ state and terminate on levels of the 7F_2 and 7F_3 manifolds. Additional high-resolution, low-temperature fluorescence measurements have been made available to us by Dr. D. L. Wood of this laboratory. A sharp but weak line at 17 211 cm⁻¹ is assigned to the ${}^{5}D_{0}-{}^{7}F_{0}$ transition. The position of ${}^{5}D_{0}$ state as obtained from the fluorescence measurement is to be compared with the absorption measurements in the visible at 17220 ± 5 cm⁻¹ which was inferred from absorption measurements at room temperature (see Fig. 2). This apparent shift may be due to the fact that the fluorescence measurements were made at 77°K, while the absorption measurements were made at 300°K.

FIG. 2. Transitions of Eu³⁺:YAlG in the spectral region of 5975-5265 Å.

TABLE I. Absorption spectrum of Eu³⁺:YAlG from 6100-4050 Å.

300°K (Å)	Absorptions Intensity ^a	72°K (Å)	Assignment
 6000.0			7E. 5D.
5060 0	VV		$1^{2}2^{-1}D_{0}$
5908.8	m	•••	772 570
5912.5	st	•••	${}^{\prime}F_{1} - {}^{0}D_{0}$
5905.5	st	• • •	
5513	w	•••	
5503	w	• • •	${}^{7}F_{2}-{}^{5}D_{1}$
5406.4	m	• • •	
5350.8	m	• • •	${}^{7}F_{1}-{}^{5}D_{0}$
5345.8	m		
5276.5	st	5276.4 (18 952 cm ⁻¹)	${}^{7}F_{0}-{}^{5}D_{1}$
5265.0	st	5266.0 (18 991 cm ⁻¹)	• •
4746.8	w	•••	
4727.3	w		${}^{7}F_{1}-{}^{5}D_{2}$
4722.5	w		
4681.0	m	4681.5 (21 356 cm ⁻¹)	${}^{7}F_{0}-{}^{5}D_{2}$
4661.0	m	4661.5 (21 448 cm ⁻¹)	
4655.8	m	4656.4 (21 473 cm ⁻¹)	
4120	vw	••••	
4108	vw	• • •	${}^{7}F_{1}-{}^{5}D_{3}$
4102	VW	• • •	-1 -0
4097	VW		
4056	337	$40585(24639 \text{ cm}^{-1})$	${}^{7}F_{0}-{}^{5}D_{2}$
1000	**	$4052.5 (24.678 \text{ cm}^{-1})$	20 23
		$4051.5 (24.683 \text{ cm}^{-1})$	
4049.0	w	$4049.0 (24697 \text{ cm}^{-1})$	

a w=weak; m=medium; st=strong; vw=very weak.

FIG. 3. The absorption spectrum of Eu³⁺: YAIG and Eu³⁺: YGaG between 3.6 and 3.1 μ at 30°K.

The fluorescence lines of Eu³⁺:YAlG are listed in Table III.

3. Absorption Spectrum of Tb³⁺: YAlG

The Tb³⁺ ion energy-level diagram is well known⁹ up to 28 000 cm⁻¹. The first excited state 7F_5 occurs at

TABLE III.	Fluorescence of Eu ³⁺ :YAIG. All transitions
	originate in the level of ${}^{5}D_{0}$.

~2000 cm⁻¹. The absorptions of $Tb^{3+}:Y_3Al_2(AlO_4)_3$

at 300°K or at lower temperatures originate from

Stark levels of the 7F_6 manifold only.

TABLE II.	The absorption	spectrum of	f Eu³+:YAlG in	the infrared.
	Transitions	originate in	the ${}^7\!F_0$ level.	

Absorptions (cm ⁻¹)	Intensity ^a	Assignment
1916	m	
1957	st	${}^{7}F_{3}$
1998	m	
2863	st	
2956	m	
3134)	st	${}^{7}F_{4}$
3143	st	
3246	' m	
3785)	w	
3791 (st	
3946	m	${}^{7}F_{5}$
4097	m	
4226	m	
4976	st	
4983 (st	
5041	st	
5151	m	${}^{7}F_{6}$
5319	w	
5358	vw	
5445	vw	

Ob (Å 300°K	s) 77°K	Average cm ⁻¹	17 220- <i>v</i>	Infrared or visible absorption	Assign- ment
5904.9	5905.1	16 934	286	286	
5912.4	5912.8	16 913	307	307	7F_1
5964.8	5964.5	16 766	454	455	-
6097.0	6096.8	16 401	819	824	
	6128ª	16 318	902		
	6174ª	16 198	1022 ^b	• • •	7F_2
6304.5	6304.0	15 862	1358		-
	6498ª	15 389	1832		
	6503ª	13 378	1842		
6533.0	6534.0	16 305	1915	1916	
6553.0	6553.0	15 259	1961	1957	${}^{7}F_{3}$
6570	(6571.0ª	15 218	2002)	1000	
~ 0570	ົ)6574.0ª	15 212	2008	1998	
	`6586.0ª	14 999	2221		
	6961.8ª	14 364	2856)	1062	
	6966.2ª	14 355	2865	2805	
	7011.1ª	14 263	2957	2956	${}^{7}F_{4}$
7106.0	7101.7ª	14 081	3139)	3134	
7100.0	7107.3ª	$14\ 070$	3150	3143	
	7158.1ª	13 970	3250	3246	
	7444.3ª	13 433	3787	∫3785	7F_5
				\3791	
	8202.0ª	12 912	5028	5041	7 F.
	8225.0ª	12 158	5062	5041	. 7. 6

 $^{\rm a}$ The intensities are relative and valid inside A group only. w=weak; m=medium; st=strong; vw=very weak.

^a Photographic method. ^b Doublet.

FIG. 4. The absorption spectrum of Eu³⁺: YAlG and Eu³⁺: YGaG between 2.05 and 1.80 µ at 30°K.

a. Absorption Spectrum in the Visible

At 300°K a complicated spectrum has been recorded in the region between 4830 and 4950 Å. At liquid helium temperature this spectrum consists of three bands, all showing fine structure. Peaks occur at 4840.0, 4843.5, 4854.0, 4857.0, and 4867.0 Å. They represent transitions from the ground state to crystal field levels within the ${}^{5}D_{4}$ manifold. These absorption bands are given in Table IV.

b. Absorption Spectrum in the Infrared

Groups of absorptions have been observed in Tb³⁺:YAlG between 2000 and 5900 cm⁻¹.

The absorption spectrum between 2130–2614 cm⁻¹; 3365-3725 cm⁻¹, and 4397-4710 cm⁻¹ consist of transitions which originate in the ground level and terminate on Stark levels of the 7F_5 , 7F_4 , and 7F_3 manifolds of Tb³⁺:YAIG. Absorptions at 5010, 5611, and 5633 cm⁻¹ are due to transitions which originate in the ground level and terminate on levels of the 7F_2 and 7F_1 manifolds. The level of the 7F_0 state of Tb³⁺:YAIG has been estab-

lished at 5882 cm⁻¹ above the ground level. The absorption spectrum of Tb³⁺:YAlG in the spectral regions of 2.5–2.1 μ and 2.05–1.65 μ is shown in Figs. 5 and 6. The spectrum of the terbium ion in the host-lattice yttrium gallium garnet in the same spectral regions is

TABLE IV. Absorptions of Tb³⁺:YAlG in the visible.

*	
300°K (Å)	4.2°K (Å)
4838	4840 (20 661 cm ⁻¹)
4855.3	$4843.5 (20 640 \text{ cm}^{-1})$ $4854.0 (20 601 \text{ cm}^{-1})$ $4857.0 (20 587 \text{ cm}^{-1})$
4867.3	4867.0 (20 546 cm ⁻¹)
4871.2	
4873.8	•••
4887.8	
4908.7	· · · ·
4920.0	
4926.0	••••
4952.0	•••
4947.5	

FIG. 5. The absorption spectrum of Tb^{3+} : YAIG and Tb^{3+} : YGaG between 2.1 and 2.5 μ at 30°K. Transitions in excited levels of the ${}^{7}F_{6}$ manifold are also indicated.

also shown. These absorption spectra were measured at 30°K. At this temperature some of the excited levels are still populated. Temperature dependence of the bands in the spectral regions as shown in Figs. 5 and 6 allows us to identify absorptions which originate in some of the Stark levels of the ${}^{7}F_{6}$ manifold. In Tb³⁺: YAlG, levels are at 74 ± 4 cm⁻¹, 122 ± 4 cm⁻¹ above the ground level; in Tb³⁺:YGaG a level has been found which is at 46 ± 3 cm⁻¹ above the ground level. The positions of the absorption bands of Tb³⁺:YAlG are given in Table V.

4. Fluorescence Spectrum of Tb³⁺: YAlG

The fluorescence spectrum has been recorded photoelectrically in the region between 4840 and 6320 Å. A large number of lines have been observed. Additional detailed spectral information was obtained from photographic measurements at 4.2 and 1.8°K, which were made available to us by Dr. D. L. Wood of this laboratory. All data are shown in Table VI. The fluorescence spectrum at 1.8° K indicates the presence of a level of the ${}^{5}D_{4}$ manifold at ~ 20516 cm⁻¹ above the ground state. Transitions to this level have not been observed in the absorption spectrum in the visible at 4.2° K.

III. ENERGY LEVEL DIAGRAM OF Eu³⁺: YAIG AND Tb³⁺: YAIG

The energy level diagram of Eu³⁺:YAlG and Tb³⁺: YAlG has been inferred from both the absorption and fluorescence spectra. The positions of the energy levels of these ions are given in Table VII.

IV. ANALYSIS OF THE SPECTRUM OF Eu³⁺: YAIG AND Tb³⁺: YAIG

Our experimental results indicate that the (2J+1=3)fold degeneracy of the ${}^{7}F_{1}$ manifolds of both ions is completely removed by the crystal field. It is obvious that the symmetry of the crystal field is low. Since we are interested in the position of the Stark components

FIG. 6. The absorption spectrum of Tb^{3+} : YAlG and Tb^{3+} : YGaG between 2.05 and 1.65 μ at 30°K. Transitions originating in excited levels of the ${}^{7}F_{6}$ manifold and terminating on levels of ${}^{7}F_{2}$, ${}^{7}F_{1}$, and ${}^{7}F_{0}$ manifolds are indicated.

TABLE V. The absorption spectrum of Tb³⁺:VAlG between 2130–5882 cm⁻¹. All transitions originate in the ground level.

Obs absorptions (cm^{-1})	Intensitya	Assignment
2130)	st	7F5
2140	st	
2191	st	
2478	st	
2600	w	
2614∫	w	
3365	st	${}^{7}F_{4}$
3380	st	
3413	st	
3488	st	
3605	st	
3697	m	
3725	st	
4397	m	${}^{7}F_{3}$
4590	m	
4650	m	
4697	m	
4710∫	m	
5010	w	${}^{7}F_{2}$
5611	m	7F_1
5633 /	st	
5882	st	7F_0

 $V(r_k, \theta_k, \varphi_k) = \sum_n \sum_m \sum_k B_n {}^m r_k {}^n Y_n {}^m (\theta_k, \varphi_k) ,$ where

tric field.

 B_n^m are constants,

in terms of the spherical harmonics:

 $Y_n^m(\theta_k,\varphi_k)$ are spherical harmonics,

of the J manifolds relative to their unsplit positions,

it is only necessary to consider the contribution to the Hamiltonian which is produced by the crystalline elec-

The crystal-field perturbation is usually⁷ expanded

(1)

n=6 for 4f electrons.

The constants B_n^m depend on the positions of the neighbors around the rare earth ion. Although these positions are not known for the rare-earth ions in the host-lattice VAIG, such data are available for the iron garnet.^{7,11} The yttrium ions which are replaced by the rare-earth ions, occupy orthorhombic sites of the cubic

^{*} w=weak; m=medium; st=strong.

¹¹ G. Z. Menzer, Kristallografiya 69, 300 (1929).

Obs (cm ⁻¹)	Series I 20 657- <i>v</i> 20 646- <i>v</i>	Obs (cm ⁻¹)	Series II 20 601- <i>v</i> 20 589- <i>v</i>	Obs (cm ⁻¹)	Series III 20 549- <i>v</i>	Obs (cm ⁻¹)	Series 20 513- <i>v</i>	s IV Average	Assign- ment
		20 530	71	20 487	62	20 453 20 443 20 304	60 70 207	61 70 207	${}^{7}F_{6}$
20 371 20 215	275 431	20 328	271			20 247 20 080	266 433	270 432	
		20 145	444	20 100 18 420 18 410	449 2129 2130	20 072 18 389 18 378	441 2124 2135	443 2127 2137	${}^{7}F_{5}$
18 483	2163	18 440	2161	10 410	2135	18 354 18 325	2159 2188	2161 2188	
18 305	2352	18 255 18 235	2334 2354			$\frac{18\ 178}{18\ 167}\\ \frac{18\ 048}{18\ 048}$	2335 2346 2387	2335ª 2350ª 2387ª	
		17 985	2064	17 947 17 935	2602 2614	17 917 17 906	2596 2607	2601 2611	
17 287 17 258	3359 3388	17 203	3387	17 167	3382	17 148 17 124 17 092 17 022	3365 3389 3421 3491	3362 3386 3421 3491	${}^{\prime}F_{4}$
16 230	4407	16 988 16 884	3601 3717	16 942 16 831	3607 3718	16 911 16 801	3602 3712	3602 3716 4302	76.
16 119	4538	45040	1600	16 017 15 972	4532 4577			4535 ^a 4577	* 3
15 939	4707	15 913	4688	15 867 15 842	4682 4707	15 067	5446	4682 4707 5446ª	${}^{7}F_{1}$
15 045 15 026 14 770	5612 5613 5880	14 987 14 966 14 728	5614 5634 5873	14 922 14 668	5627 5881	14 900	5613	5613 5631 5878	7F ₀

Table VI. Fluorescence of Tb^{s+} :YAIG. Fluroescence originates in levels of the $^{5}D_{4}$ manifold.

* Levels of ${}^{7}F$ manifolds not observed in the absorption spectrum in infrared

space group $0_h(10)Ia3d$. Eight oxygen ions located on the corners of a distorted cube are the closest neighbors. The B_n^{m} 's in the iron garnet have been calculated by Dillon and Walker.⁸ Their calculation shows that B_{2^0} , $B_{2^{2}}, B_{4^{0}}, B_{4^{4}}, B_{6^{0}}$, and $B_{6^{4}}$ are the most important terms. Recent crystal-field calculations on the splitting of Jmanifolds of Nd³⁺:YAlG indicate⁶ that the symmetry of the crystal field is approximately tetragonal. By employing the operator equivalent method of Stevens, Elliott, and Judd,¹²⁻¹⁴ we can write the crystal-field Hamiltonian H_c as

$$\begin{aligned} H_{c} &= \alpha \Big[A_{2^{0}} Y_{2^{0}} + A_{2^{2}} (Y_{2^{+2}} + Y_{2^{-2}}) \Big] \\ &+ \beta \Big[A_{4^{0}} Y_{4^{0}} + A_{4^{4}} (Y_{4^{+4}} + Y_{4^{-4}}) \Big] \\ &+ \gamma \Big[A_{6^{0}} Y_{6^{0}} + A_{6^{4}} (Y_{6^{4}} + Y_{6^{-4}}) \Big], \end{aligned}$$
(1a)

where α , β , γ are operator equivalent constants and

$$A_n^m = \langle r^n \rangle B_n^m$$
 with $(r^n) = R(r)^2 r^{n+2} dr$.

It has been shown that some of the J states of the trivalent rare-earth ions depart quite drastically from Russell-Saunders coupling. These deviations are, however, small for the ${}^7\!F$ states of the Eu³⁺ and Tb^{3+.15}

The splitting of the ${}^{7}F_{1}$ manifold is directly related to the parameters A_2^0 and A_2^2 . The position of the Stark components of this manifold as a function of the ratio A_{2}^{2}/A_{2}^{0} is shown in Figure 7. Values of these parameters for Eu³⁺:YAlG calculated for the three possible assignments, which are indicated with a, b, and c in Fig. 7, are given in Table VIII. From absorption and fluorescence spectra we have been able to establish the levels of the 7F_1 manifold of Eu³⁺:Y₃Ga₂(GaO₄)₃¹⁶ at 307, 345, and 388 cm⁻¹ above the ground level. The parameters $A_{2^{0}}$ and $A_{2^{2}}$ calculated from these data, using the assignments corresponding to those for Eu³⁺:YAlG, are also given in Table VIII.

It is straightforward to show that the crystal yield parameters $A_{2^{0}}$, $A_{4^{0}}$, $A_{4^{4}}$, $A_{6^{0}}$, and $A_{6^{4}}$ do not completely remove the (2J+1)-fold degeneracy of manifolds with integral values of J. Independent of the values of these crystal-field parameters one expects one doubly degenerate level for J=1 and J=2; two doubly degenerate levels for J=3 and J=4; and three doubly degenerate Stark components of J=5 and J=6 manifolds. Either the parameters $A_{2^{2}}$, $A_{4^{2}}$, and $A_{6^{2}}$ or J mixing can remove this degeneracy. Our experimental results indicate that some of the Stark components of Eu³⁺ and Tb³⁺:YAlG and also of Eu³⁺:YGaG are close together (Table VII). The number of these doublets agree with the number of doubly degenerate Stark levels of the ^{7}F manifolds in a field of tetragonal symmetry. The

¹² K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209 (1952). ¹³ R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London) A218, 553 (1953).

 ¹⁴ B. R. Judd, Proc. Roy. Soc. (London) A227, 552 (1955).
 ¹⁵ G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).

¹⁶ A complete analysis of the spectrum of Eu³⁺:YGaG is discussed in the following paper [J. A. Koningstein and J. E. Geusic, Phys. Rev. 135, A726 (1964)].

Levels of Eu ³⁺ :YAlG (cm ⁻¹)	Assign- ment	Number of Stark levels	Levels of Tb ³⁺ :YAlG (cm ⁻¹)	Assign- ment	Number of Stark levels
0	${}^{7}F_{0}$	1	<u></u> <u></u>	${}^{7}F_{6}$	9
286 307	${}^{7}F_{1}$	3	61 70}		
455			116		
819 902 1010 1022 1358	7F2	4	$207 \\ 270 \\ 432 \\ 443 $		
1832 1842 1915 1959 2000 2008 2221	7F_3	7	2128 2138 2161 2189 2335 2350 2387 2601 2612	7F5	9
2856 2865 2957 3137 3147 3248	⁷ F4	6	3364 3383 3417 3489 3603 3697 3721	7F_4	7
3787) 3791} 3946 4097ª 4226ª	${}^{7}F_{5}$	5	4394 4535 4577	${}^{7}F_{3}$	6
4976 4983 5028	${}^{7}F_{6}$	8	4590 4682 \ 4707 <i>}</i>		
5062 5151			5010	${}^{7}F_{2}$	1
5319 5358 5445			5446 5612 \ 5632 }	${}^{7}F_{1}$	3
			5882	${}^{7}F_{0}$	1
17 220	${}^{5}D_{0}$	1	20513 20548	${}^{5}D_{4}$	6
18 952 18 991	${}^{5}D_{1}$	2	$20588 \\ 20601 $		
21 356	${}^{5}D_{2}$	3	20 546) 20 659 (
21 448 21 473 24 639 24 678 24 683 24 697	${}^{5}D_{3}$	4	20 009)		

TABLE VII. Energy levels of ^{*}Eu³⁺ and Tb³⁺:YAlG.

TABLE VIII. Values of $A_{2^{0}}$ and $A_{2^{2}}$ for Eu³⁺:YAlG and Eu³⁺:YGaG.

Eu³⁺:YAlG

Eu³⁺:YGaG

(a) A_{2^0}	265	103.5
A_{2}^{2}	± 52.5	± 95
(b) A_{2^0}	-282	-135
$A_{2^{2}}$	± 370	± 107.3
(c) $A_{2^{0}}$	-248	-71.1
$A_{2^{2}}$	± 422	± 203

^a For Eu³⁺:YAlG, see Fig. 7.

Assignment^a (cm⁻¹)

of the ${}^{7}F_{3}$, ${}^{7}F_{4}$, and ${}^{7}F_{5}$ manifolds of Eu³⁺ and Tb³⁺: YAlG have been employed to evaluate values of the crystal field parameters $A_{4^{0}}$, $A_{4^{4}}$, $A_{6^{0}}$, and $A_{6^{4}}$, neglecting the terms $A_{4^{2}}$ and $A_{6^{2}}$ for these ions. A comparison of observed and calculated splitting of the ${}^{7}F$ manifolds of both ions can be seen in Figs. 8 and 9. Values of the parameters which were used to calculate the splittings are given in Table IX.

Discrepancies between calculated and observed splittings are most pronounced for those Stark components

observed splitting of the doublets indicates a small deviation from tetragonal symmetry. This deviation in the gallium garnet is larger than in the aluminum garnet, which implies that the parameters A_{2}^{2} , A_{4}^{2} , and A_{6}^{2} are larger in the gallium garnet than in the aluminum garnet. As a result, we conclude that assignment *a* in Fig. 7 is the correct one for Eu³⁺:YAlG.

^a Split in Eu³⁺; YGa₂(GaO₄)₃.

The doublet-doublet spacing of the Stark components

FIG. 7. The splitting of a J=1 manifold as a function of the ratio A_2^2/A_2^0 . a, b and c refer to the assignments possible for the ${}^{2}F_1$ manifold levels of Eu³⁺:YAlG.

TABLE IX.	The va	lues of the	e crystal-	field par	ameters
$A_n^m = \langle r^n \rangle$	B_n^m for	Eu ³⁺ and	Tb ³⁺ in	YAlĜ iı	1 cm ⁻¹ .

	$A_{2^{0}}$	$A_{2^{2}}$	$A_{4^{0}}$	$A_{4^{4}}$	A_{6}^{0}	A_{6}^{4}
Eu ³⁺ :YAlG	268	51	$-190 \\ -184$	950	94	-1150
Tb ³⁺ :YAlG	266	50		920	93	-1115

which are far removed from the center of gravity of the J manifolds. These discrepancies are probably due to J mixing. The disagreement between calculated and observed splitting is greatest for the ${}^{7}F_{6}$ state; such a disagreement was found by Judd for Eu³⁺ ethylsulfate.¹⁷

EU + Y3AL2(ALO4)3

FIG. 8. Calculated and observed splitting of 7F manifolds of Eu³⁺:YAIG. *E* stands for the doublets and indicate in general the deviation of tetragonal symmetry.

¹⁷ B. R. Judd, Mol. Phys. 2, 4, 407 (1960).

Tb3+: Y3AL2 (ALO4)3

FIG. 9. Observed and calculated splittings of the 7F manifolds of Tb³⁺:YAlG. *E* stands for the doublets.

It should also be noted that the observed doublet spacing is larger than the calculated spacing. This is probably due to the fact that the parameters A_{4^2} and A_{6^2} are ignored in the calculations.

ACKNOWLEDGMENTS

The author wishes to thank Dr. J. E. Geusic for suggesting the problem and Dr. L. G. Van Uitert for supplying the crystals used in these investigations. He is indebted to Dr. D. L. Wood who made his fluorescence measurements available and to Dr. F. Varsanyi for valuable discussions. The technical assistance of I. Camlibel is acknowledged, while thanks are also due to Mrs. L. A. Needham who made computer programs which were used in the calculations.